Model NERA-2 Non-Elastomeric Sliding Sleeve
Assembly & Testing Technical Information
Part Number: (Various)

Description

The NERA-2 Non-Elastomeric Sliding Sleeve is a communication device with a ported inner sleeve that can be opened or closed using a shifting tool by standard slickline or coiled tubing methods. Equalizing holes in the inner sleeve provide pressure equalization between the tubing and casing annulus as the sleeve is opened. The Sliding Sleeve is made up to and forms part of the tubing string. The NERA-2 Sliding Sleeve is a shift-up-to-open tool.

The NERA-2 Non-Elastomeric Sliding Sleeve uses common machined parts that allow the shift-open direction to be changed from up-to-open to down-to-open by simply substituting different sub ends.

The NERA-2 Non-Elastomeric Sliding Sleeve is designed for use in high pressure and high temperature wells to establish a means of communication between the tubing string and the casing annulus for single-tubing or multiple-tubing string completions. The NERA-2 Sliding Sleeve may be used for directing flow from the casing to the tubing in alternate or selective completions. Other applications include killing a well, spot acidizing and fracturing, or equalizing pressure between an isolated formation and the tubing string.

Features and Benefits

- Proven non-elastomeric sealing design, that is cost effective and reliable, with a long operating life.
- No o-rings or standard chevron style seals used.
- Manufactured in 4140, 9Cr, 13Cr, S13Cr and Super Duplex materials.
- GOR Selective Nipple Profile to land slickline tools. (Comparable to Halliburton's R® Landing Nipple Profile).
- Available for 10,000psi & 12,000psi maximum working pressures.

Technical Numbers and Accessory Info

- **Maximum OD**: API Coupling OD is standard, but OD can be larger, or smaller upon request.
- **Minimum ID**: Seal Bores.
- **Opening Direction**: UP
- **Drift Diameter**: 0.0010” to 0.0015” smaller than seal bore Minimum ID.
- **Shifting Tools**: Otis “B”, Otis “BO”, and DFAST
- **Separation Sleeve**: GXS
- **Blanking Plug**: GPX
- **Standing Valve**: GVX

Sliding Sleeves-Landing Nipples-Blanking Plugs-Shifting Tools-On/Off Tools-Completion Packers

Ph: 403-279-2015 Fax: 403-279-2019 www.giantoiltools.com sales@giantoiltools.com
Model NERA-2 Non-Elastomeric Sliding Sleeve
Assembly & Testing Technical Information
Part Number: (Various)

Testing

It is important that the sealing surfaces for the non-elastomeric seals are polished to a high finish to help load the seal stack at low pressure, this is important to ensure successful testing and operation.

All NERA-2 Sliding Sleeves are pressure tested to 10,000 psi using internal seal bore seals that pressure test both the seal stacks and the seal bores.

As previously noted, NERA-2 Sliding Sleeves are shifted with Otis type “B” shifting tools, for testing purposes, a shifting tool dressed with self-releasing keys is used; shear to release keys can also be used.

Depending on the amount of squeeze applied to the V-Rings after assembling the sliding sleeve, the shifting force required to open and close the sliding sleeve may vary, therefore a steel pin is used inside the shifting tool to stop premature shearing of the pin before the sliding sleeve has been fully opened or closed.

1. After fully assembling the sliding sleeve, tighten it in a vise horizontally and shift the sliding sleeve closed-open-closed, verifying that the sliding sleeve is fully closed and open each time.
2. Insert the test plugs into either end of the sliding sleeve; you will feel the seals grab the seal bores, confirming location.
3. Fill the Sliding Sleeve with water or hydraulic fluid and apply pressure up to 500 psi.
4. Apply pressure in 1,000 psi increments, pausing every 1,000 psi for 5 seconds; up to 10,000 psi.
5. Hold at 10,000 psi for 10 minutes, ensure there are no leaks and drop in pressure, engrave the sliding sleeve with a pressure test serial number and mark the pressure test chart with the same serial number.
6. Bleed off pressure, shift the sliding sleeve open-closed to ensure functionality and tighten sliding sleeve body connections, wipe down and store.

Operating

When one or more NERA-2 Sliding Sleeves are run on the same production string, special slickline tool strings might be required to selectively open or close the Sliding Sleeve depending on which Sliding Sleeve is to be opened or closed first.

In the NERA-2 Sliding Sleeve, there is an open, equalized, and closed position. The equalized position allows differential pressure across the Sliding Sleeve to equalize prior to the final full open position and prevent the full force of the differential pressure from acting on the v-seal stacks.
Opening an NERA-2 Sliding Sleeve

Important Note: When opening an NERA-2 Sliding Sleeve, it’s recommended that there is minimal to no differential pressure across the Sliding Sleeve. Differential pressure across the Sliding Sleeve from the annulus to tubing or tubing to annulus could cause damage to the seals of the sliding sleeve.

1. With the keys facing upward, attach the Otis “B” shifting tool to the slickline tool string. Lower the slickline tool string in the tubing until below the Sliding Sleeve. Move the slickline tool string upward until the keys engage in the Upper recess of the Inner Sleeve.
2. Jar upward until the pressure across the Sliding Sleeve starts to equalize.
3. Once the pressure across the Sliding Sleeve has equalized, continue to jar upward until the Inner Sleeve is completely shifted, fully opening the Sliding Sleeve.
4. Continue jarring upward until the inclined shoulder of the Sliding Sleeve forces the keys inward, allowing the shifting tool to pass through the sleeve.
5. Before returning the shifting tool to the surface, run it back through the Sliding Sleeve several times to ensure the Inner Sleeve is in the open position.

Closing an NERA-2 Sliding Sleeve

1. With the keys facing downward, attach the Otis “B” shifting tool to the slickline tool string. Run the slickline tool string in the tubing until the keys of the shifting tool lock in the Lower recess of the Inner Sleeve.
2. Jar downward until the Inner Sleeve is completely shifted, placing the Sliding Sleeve in the closed position.
3. Continue jarring downward until the inclined shoulder of the Sliding Sleeve forces the keys of the shifting tool inward, disengaging it from the recess of the Inner Sleeve, and allow the shifting tool to pass through the sliding sleeve.
4. Before returning the shifting tool to the surface, run it back through the Sliding Sleeve several times to ensure the Inner Sleeve is in the closed position.
Giant Oil Tools Ltd., Model NERA-2 Sliding Sleeve

<table>
<thead>
<tr>
<th>*Seal Bore ID</th>
<th>Flow Area (Ports)</th>
<th>Flow Area (Min ID)</th>
<th>Max OD</th>
<th>Standard Thread Box x Pin</th>
<th>Shifting Tool</th>
<th>Max Working Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>in.</td>
<td>mm.</td>
<td>IN²</td>
<td>CM²</td>
<td>in.</td>
<td>mm.</td>
<td></td>
</tr>
<tr>
<td>1.710</td>
<td>43.43</td>
<td>4.73</td>
<td>30.516</td>
<td>2.95</td>
<td>14.806</td>
<td></td>
</tr>
<tr>
<td>1.781</td>
<td>45.23</td>
<td>5.18</td>
<td>35.051</td>
<td>2.489</td>
<td>16.058</td>
<td></td>
</tr>
<tr>
<td>1.875</td>
<td>47.62</td>
<td>5.75</td>
<td>38.574</td>
<td>2.75</td>
<td>17.799</td>
<td></td>
</tr>
<tr>
<td>2.125</td>
<td>53.97</td>
<td>6.16</td>
<td>39.741</td>
<td>3.544</td>
<td>22.864</td>
<td></td>
</tr>
<tr>
<td>2.188</td>
<td>55.57</td>
<td>6.61</td>
<td>41.219</td>
<td>3.758</td>
<td>24.245</td>
<td></td>
</tr>
<tr>
<td>2.312</td>
<td>58.26</td>
<td>7.11</td>
<td>43.722</td>
<td>4.199</td>
<td>27.09</td>
<td></td>
</tr>
<tr>
<td>2.562</td>
<td>65.07</td>
<td>8.29</td>
<td>48.999</td>
<td>5.156</td>
<td>33.264</td>
<td></td>
</tr>
<tr>
<td>2.750</td>
<td>69.30</td>
<td>9.04</td>
<td>54.309</td>
<td>5.94</td>
<td>38.322</td>
<td></td>
</tr>
<tr>
<td>2.813</td>
<td>71.45</td>
<td>9.84</td>
<td>58.784</td>
<td>6.21</td>
<td>40.070</td>
<td></td>
</tr>
<tr>
<td>3.437</td>
<td>87.29</td>
<td>13.76</td>
<td>94.164</td>
<td>9.273</td>
<td>59.825</td>
<td></td>
</tr>
<tr>
<td>3.688</td>
<td>93.67</td>
<td>14.82</td>
<td>100.93</td>
<td>10.677</td>
<td>68.883</td>
<td></td>
</tr>
<tr>
<td>3.813</td>
<td>96.85</td>
<td>15.98</td>
<td>107.81</td>
<td>11.413</td>
<td>73.632</td>
<td></td>
</tr>
<tr>
<td>4.562</td>
<td>115.87</td>
<td>21.140</td>
<td>136.38</td>
<td>16.337</td>
<td>105.40</td>
<td></td>
</tr>
</tbody>
</table>

*Seal Bore ID is also the Minimum ID of the Sliding Sleeve.

**High Pressure 12,000 psi options available.
"GOR" SELECTIVE HIGH PRESSURE PROFILE.
(COMPARABLE TO HALLIBURTON'S R® LANDING NIPPLE).

SECTION A-A
SCALE 1 : 4

Do not scale drawing

"B" SHIFTING TOOL PROFILE

ID BAND INDICATES "UP"

SHIFT-UP-TO-OPEN
SHifting Tool: B or DFAST

MIN ID
MAX OD
OAL

SEAL BORE
INNER SLEEVE ID

PIN THREAD DOWN
BOX THREAD UP

Giant Oil Tools

Material: —

Table:

<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area</td>
<td>sq. in.</td>
<td>2064.2</td>
</tr>
<tr>
<td>Mass</td>
<td>LB</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes:

- All thread entry and exit angles to be 30 degrees off axis of thread.

- All thread entry and exit angles to be 45 degrees off axis of thread, unless otherwise specified.

- Remove all burrs and sharp corners.

- All threads—right hand.

- Use or reproduce without written approval from Giant Oil Tools.

- Confidential and trade secret, do not disclose.